'senlm' fits a species-environment non-linear model via maximum likelihood.
senlm(
model = NULL,
data = NULL,
xvar = NULL,
yvar = NULL,
mean_fun = NULL,
err_dist = NULL,
binomial_n = NULL,
y = NULL,
x = NULL,
conf.level = 0.95
)
Model to fit.
Data frame of x and y.
Name of x (domain) variable (or column number).
Name of y (response) variable (or column number).
Mean function (if model not supplied).
Error distribution (if model not supplied).
The binomial n parameter, if error distribution is "binomial.count" or "binomial.percent" (if model not supplied).
Repsonse variable vector (if data not supplied).
Vector of x (domain) values (if data not supplied).
Confidence level for parameter confidence intervals. Default is 0.95.
Object containg model fit to data y and x.
if (FALSE) {
## Simulate data
dat <- create_simulated_datasets(pars, N=100, xmin=0, xmax=100, seed=12345)
## Fit model
fit <- senlm(mean_fun="gaussian", err_dist="poisson", data=dat,
xvar="x", yvar="gaussian_poisson")
## Real data
model <- set_models(mean_fun="gaussian", err_dist="zip")
fit <- senlm(model=model, data=haul, xvar="depth", yvar="Sebastolobus.altivelis")
}