Create model information data frame (one row).

set_model_info(
  model = NULL,
  mean_fun = NULL,
  err_dist = NULL,
  binomial_n = NA,
  delta = NA,
  thetaC = NULL,
  data = NULL
)

Arguments

model

A row from a set_models() data frame.

mean_fun

Mean function.

err_dist

Error distribution.

binomial_n

Binomial size parameter, n.

delta

Tail-adjusted beta delta parameter.

thetaC

Alternate specification of constant parameters, either the binomial parameter, thetaC=c(n=40); or the tail-adjusted beta delta parameter, thetaC=c(delta=0.01).

data

Data (x,y) set used to estimate tail-adjusted beta delta parameter.

Value

Data frame (one row) containing model information.

Examples


Model <- set_models (mean_fun=c("gaussian"), err_dist=c("zitab"), method="crossed")
set_model_info (model=Model)
#> $model_name
#> [1] "gaussian_zitab"
#> 
#> $mean_fun
#> [1] "gaussian"
#> 
#> $err_dist
#> [1] "zitab"
#> 
#> $binomial_n
#> [1] NA
#> 
#> $delta
#> [1] NA
#> 
#> $theta
#> [1] "H"     "m"     "s"     "pi"    "sigma"
#> 
#> $u.theta
#> [1] "logit.H"   "raw.m"     "log.s"     "logit.pi"  "log.sigma"
#> 
#> $trans
#> [1] "logit" "raw"   "log"   "logit" "log"  
#> 
#> $theta.lb
#> [1]    0 -Inf    0    0    0
#> 
#> $theta.ub
#> [1]   1 Inf Inf   1 Inf
#> 
#> $thetaM
#> [1] "H" "m" "s"
#> 
#> $thetaE
#> [1] "pi"    "sigma"
#> 
#> $thetaC
#> [1] "delta"
#> 
set_model_info (mean_fun="gaussian", err_dist="negbin")
#> $model_name
#> [1] "gaussian_negbin"
#> 
#> $mean_fun
#> [1] "gaussian"
#> 
#> $err_dist
#> [1] "negbin"
#> 
#> $binomial_n
#> [1] NA
#> 
#> $delta
#> [1] NA
#> 
#> $theta
#> [1] "H"   "m"   "s"   "phi"
#> 
#> $u.theta
#> [1] "log.H"   "raw.m"   "log.s"   "log.phi"
#> 
#> $trans
#> [1] "log" "raw" "log" "log"
#> 
#> $theta.lb
#> [1]    0 -Inf    0    0
#> 
#> $theta.ub
#> [1] Inf Inf Inf Inf
#> 
#> $thetaM
#> [1] "H" "m" "s"
#> 
#> $thetaE
#> [1] "phi"
#> 
set_model_info (mean_fun="gaussian", err_dist="binomial.count", binomial_n=50)
#> $model_name
#> [1] "gaussian_binomial.count"
#> 
#> $mean_fun
#> [1] "gaussian"
#> 
#> $err_dist
#> [1] "binomial.count"
#> 
#> $binomial_n
#> [1] 50
#> 
#> $delta
#> [1] NA
#> 
#> $theta
#> [1] "H" "m" "s"
#> 
#> $u.theta
#> [1] "nlogit.H" "raw.m"    "log.s"   
#> 
#> $trans
#> [1] "nlogit" "raw"    "log"   
#> 
#> $theta.lb
#> [1]    0 -Inf    0
#> 
#> $theta.ub
#> [1]  50 Inf Inf
#> 
#> $thetaM
#> [1] "H" "m" "s"
#> 
#> $thetaC
#> [1] "binomial_n"
#> 
set_model_info (mean_fun="gaussian", err_dist="tab", delta=0.01)
#> $model_name
#> [1] "gaussian_tab"
#> 
#> $mean_fun
#> [1] "gaussian"
#> 
#> $err_dist
#> [1] "tab"
#> 
#> $binomial_n
#> [1] NA
#> 
#> $delta
#> [1] 0.01
#> 
#> $theta
#> [1] "H"     "m"     "s"     "sigma"
#> 
#> $u.theta
#> [1] "logit.H"   "raw.m"     "log.s"     "log.sigma"
#> 
#> $trans
#> [1] "logit" "raw"   "log"   "log"  
#> 
#> $theta.lb
#> [1]    0 -Inf    0    0
#> 
#> $theta.ub
#> [1]   1 Inf Inf Inf
#> 
#> $thetaM
#> [1] "H" "m" "s"
#> 
#> $thetaE
#> [1] "sigma"
#> 
#> $thetaC
#> [1] "delta"
#>